1. Abbaszadeh, S. et al.: A design concept and kinematic model for a soft aquatic robot with complex bio-mimicking motion; Journal of Bionic Engineering, 19, 16-28, (2022), doi: 10.1007/s42235-021-00126-4
  2. Pauwels, I. et al.: Archimedes Screw-An Alternative for Safe Migration Through Turbines? Novel Developments for Hydropower (2022)
  3. Powalla, D. et al.: A numerical approach for active fish behaviour modelling with a view toward hydropower plant assessment, Renewable Energy, (2022)
  4. Khan, A. H. et al.: An open 3D CFD model for the investigation of flow environments experienced by freshwater fish; Journal of Ecologial Informatics (2022)
  5. Cleynen, O. et al.: An efficient method for computing the power potential of bypass hydropower installations, Energies (2022)
  6. Helbig, U. et al.: The meander-type fish pass: An alternative to the conventional vertical slot pass. River Research and Applications, 1–13, (2021), doi: 10.1002/rra.3827
  7. Powalla, D. et al.: A computational fluid dynamics model für a water power plant as platform for etho- and ecohydraulic research, Energies 14, 639, 1-14, (2021), doi: 10.3390/en14030639
  8. Roth, M. S. et al.: Turbulent eddy identification of a meander and vertical slot fishways in numerical models applying the IPOS-framework. Journal of Ecohydraulics, (2021), doi: 10.1080/24705357.2020.1869916
  9. Müller, S. et al.: Numerical analysis of the compromise between power output and fish-friendliness in a vortex power plant. Journal Ecohydraulics,doi: 10.1080/24705357.2018.1521709, (2019) 1-13.
  10. Stamm, J. et al.: Hydrodynamic and ethohydraulic analysis of a water vortex power plant for assessment of fish passability, Wim Uijttewaal & Mário J. Franca, et al.: River Flow 2020 - Proceedings of the 10th Conference on Fluvial Hydraulics. Taylor & Francis Group, London: 2372–2380,(2020) doi: 10.1201/b22619
  11. Ghani R. et al.: Experimental investigation of a water vortexpower plant – performance and degree ofefficiency,International Conference on Environment and Natural Science, Prague (2019)
  12. Müller, S. et al.: Numerical analysis of the compromise between power output and fish-friendliness in a vortex power plant. Journal Ecohydraulics

    , 1-13, (2019), doi: 10.1080/24705357.2018.1521709

Publications before the project starts

  1. Foust, J.M., et al: Model Testing for Fish Passage: Evaluation of Ice Harbor Turbine Improvements, Proceedings of HydroVision International 2013, PennWell Corp, Tulsa, Okla. (2013)                                                                                                                                                                                                                                                                                    
  2. Wagner, F. & Schmalz, W.: A working guide for site specific evaluations of fish protection and bypass systems, Fish Passage, International conference on river connectivity best practices innovations, Groningen, Niederlande, (2015).                                                                                                                                                                                                       
  3. I. Kopecki,  et al: "Leitströmung an Fischaufstiegsanlagen: Bewertung und Optimierung über ethohydraulische Modellierung". Deutsch. In: Wasserwirtschaft 10/2016 (2016), S. 37-42. DOI: 10.1007/s35147-016-0152-3.                                                                                                                                                                                                                             
  4. I. Kopecki, I. & M. Schneider: Betriebliche und bauliche Maßnahmen zur Verringerung der Auswirkungen des Schwallbetriebs auf Fischlarven, La Houille Blanche, (2016)                
  5. I. Kopecki, et al: Depth-dependent hydraulic roughness and its impact on the assessment of hydropeaking, Sci. Total Environ. 575, 1597-1605, (2017)                                                
  6. N. Müller und J. Stamm. "Errichtung eines 1:1 Labormodells für ethohydraulische Untersuchungen an einem Wasserwirbelkraftwerk". In: Dresdner Wasserbauliche Mitteilungen (Heft 60). Deutschland, Dresden: Technische Universität Dresden, Institut für Wasserbau und technische Hydromechanik, 2018, S. 123-132.                                                                
  7. N. Müller, J. Stamm, and F. Wagner. "Ein Wasserwirbelkraftwerk als ethohydraulisches Versuchsfeld". In: Proceedings of the Congress-International Association for Hydraulic Research (IAHR). Italy, Trentino, 2018. DOI: 10.3850/978-981-11-2731-1_282-cd.                                                                                                                                                            
  8. S. Müller, O. Cleynen, S. Hoerner, N. Lichtenberg, und D. Thévenin. "Numerische Analyse des Kompromisses zwischen Leistung und Fischfreundlichkeit in einem Wirbelkraftwerk". In: Journal of Ecohydraulics (2018). DOI: 10.1080/24705357.2018.1521709.                                                                                                                                                                     
  9. Müller, N. et al: Ein Wasserwirbelkraftwerk als ethohydraulisches Testfeld, Proceedings of the Congress-International Association for Hydraulic Research (IAHR), (2018). doi: 10.3850/978-981-11-2731-1_282-cd


  1. Benigni, H. et al.: Numerical Simulation and Experimental Verification of Downstream Migration in a Bulb Turbine. In: 31st IAHR Symposium on Hydraulic Machinery and Systems, Trondheim, Norway, (2022)
  2. Evans, O., et al: Not just the pump; broader considerations for downstream migrating silver eels at a ‘fish-friendly’ pumping station. In: Fish Passage 2022:International Conference on River Connectivity, Richland, USA, (2022)
  3. Hoerner, S. et al.: The RETERO project: 3R motivated risk assessment method for downstream fish passage through hydraulic structures, 14th International Symposium on Ecohydraulics, Nanjing, China, (2022)
  4. Wagner et al.: A new, non-invasive fish backpack biologger to measure the physical conditions experienced by swimming fish during downstream passage, Fish Passage 2022:International Conference on River Connectivity, Richland, USA, (2022)
  5. Powalla, D., Hoerner, S. and Thévenin, D.: Numerical assessment of fish injury risk combining agent-based fish behavior with turbine blade-strike detection,Fish Passage 2022:International Conference on River Connectivity, Richland, USA, (2022)
  6. Powalla, D. et al.: Fish injury assessment of a hydropower facility bypass, Conference on Modelling Fluid Flow (CMFF’22), Budapest, Hungary, (2022)
  7. Roth, M. S. et al.: Ethohydraulic Laboratory Experiments on Fish Descent in Accelerated Flows, 39th IAHR World Congress, Granada, Spain, (2022
  8. Weber, C. et al.: Experimental and numerical evaluation of a multi-degree of freedom biomimicking fish locomotion with micro fibre composite actuation for a flexible robot, MECHCOMP7 – 7th International Conference on Mechanics of Composites, Porto, Spain, (2021)
  9. Powalla, D. et al.: Near body flow field measurements on a fish robot, 9th International Symposium on Enviromental Hydraulics, Seoul, Korea, (2021)
  10. Stoltz, U. et al.: Influence of operation modes and fish behavior on fish passage through turbines. In: 30th IAHRSymposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, (2021)
  11. Stamm, J. et al.: Hydrodynamic and ethoydraulic analysis of a water vortex plant for assessment of fish passability, Proceedings of the River Flow 2020 conference, Delft, (2020), doi:10.1201/b22619

Last Modification: 22.03.2023 - Contact Person: